Search results

1 – 4 of 4
Article
Publication date: 26 April 2023

Mattia Mele, Giampaolo Campana, Gregorio Pisaneschi, Luciano De Martino and Michele Ricciarelli

The purpose of this paper is to give an insight into relevant aspects of 3D printing of clay paste enhanced with scrap polymer powder which have not been investigated by previous…

Abstract

Purpose

The purpose of this paper is to give an insight into relevant aspects of 3D printing of clay paste enhanced with scrap polymer powder which have not been investigated by previous studies. Specifically, the geometrical features of the deposited lines, dimensional accuracy of benchmarks and mechanical properties of printed parts are investigated.

Design/methodology/approach

Firstly, the 3D printer is used to deposit lines of the paste under various combinations of material composition and process parameters. 3D scanning is used to measure their dimensional and geometrical errors. The results are elaborated through statistics to highlight the role of material and processing conditions. Then, four benchmark parts are printed using materials with different percentages of polymer powder. The parts are scanned after each step of the post-processing to quantify the effects of printing, drying and melting on dimensional accuracy. Finally, drop weight tests are carried out to investigate the impact resistance of specimens with different powder contents.

Findings

It is found that the quality of deposition varies with the printing speed, nozzle acceleration and material composition. Also, significant differences are observed at the ends of the lines. Materials with 10 Wt.% and 40 Wt.% of powder exhibit relevant shape variations due to the separation of phases. Accuracy analyses show significant deformations of parts at the green state due to material weight. This effect is more pronounced for higher powder contents. On the other hand, the polymer reduces shrinkage during drying. Furthermore, the impact test results showed that the polymer caused a large increase in impact resistance as compared to pure clay. Nonetheless, a decrease is observed for 40 Wt.% due to the higher amount of porosities.

Research limitations/implications

The results of this study advance the knowledge on the 3D printing of clay paste reinforced with a scrap polymer powder. This offers a new opportunity to reuse leftover powders from powder bed fusion processes. The findings presented here are expected to foster the adoption of this technique reducing the amount of waste powder disposed of by additive manufacturing companies.

Originality/value

This study offers some important insights into the relations between process conditions and the geometry of the deposited lines. This is of practical relevance to toolpath planning. The dimensional analyses allow for understanding the role of each post-processing step on the dimensional error. Also, the comparison with previous findings highlights the role of part dimensions. The present research explores, for the first time, the impact resistance of parts produced by this technology. The observed enhancement of this property with respect to pure clay may open new opportunities for the application of this manufacturing process.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Book part
Publication date: 30 May 2017

Abstract

Details

Brazil
Type: Book
ISBN: 978-1-78635-785-4

Abstract

Details

Business Plasticity through Disorganization
Type: Book
ISBN: 978-1-78756-211-0

Open Access
Article
Publication date: 12 March 2024

Cristina Mele and Tiziana Russo-Spena

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology…

Abstract

Purpose

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology smartness’ to refer to the ability of technology to sense, adapt and learn from interactions. Accordingly, we seek to address how smart technologies (i.e. cognitive and distributed technology) can be powerful resources, capable of innovating in relation to actors’ agency, the structure of the service ecosystem and value co-creation practices.

Design/methodology/approach

This conceptual article integrates evidence from the existing theories with illustrative examples to advance research on service innovation and value co-creation.

Findings

Through the performative utterances of new tech words, such as onlife and materiality, this article identifies the emergence of innovative forms of agency and structure. Onlife agency entails automated, relational and performative forms, which provide for new decision-making capabilities and expanded opportunities to co-create value. Phygital materiality pertains to new structural features, comprised of new resources and contexts that have distinctive intelligence, autonomy and performativity. The dialectic between onlife agency and phygital materiality (structure) lies in the agencement of smart tech–enabled value co-creation practices based on the notion of becoming that involves not only resources but also actors and contexts.

Originality/value

This paper proposes a novel conceptual framework that advances a tech-based ecology for service ecosystems, in which value co-creation is enacted by the smartness of technology, which emerges through systemic and performative intra-actions between actors (onlife agency), resources and contexts (phygital materiality and structure).

Details

Journal of Service Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-5818

Keywords

1 – 4 of 4